Tampilkan postingan dengan label Bioenergetika. Tampilkan semua postingan
Tampilkan postingan dengan label Bioenergetika. Tampilkan semua postingan

Selasa, 12 Maret 2013

ASAM VOLATIL DAN BAKTERI METANOGEN




Kebanyakan hasil limbah dari rumah tangga ataupun indutri berupa material organik. Material organik ini dapat didegradasi dengan metode tertentu tergantung jenisnya. Material ini ada yang sederhana maupun kompleks tergantung bagaimana proses pembuatannya. Semakin panjang dan kompleks, material organik ini membutuhkan waktu degradasi lebih lama daripada material organik sederhana dan pendek. Material ini kebanyakan berupa lipid, karbohidrat dan protein.
Metanogenesis adalah konversi asam lemak dengan berat molekuler rendah (asam volatil seperti asam format, asetat, propionat, dan asam butirat) atau alkohol, karbondioksida, dan hidrogen ke gas metana (CH4).
Secara alami, turunan lipid dapat didegradasi. Kebanyakan lipid adalah tidak larut ataupun sedikit larut dengan air tetapi larut dalam campuran alkohol-eter. Ada beberapa asam lemak yang dibentuk dari hidrolisis lemak dan dapat bereaksi dengan ion logam untuk membentuk sabun ataupun garam. Ada beberapa asam lemak  yang memiliki berat molekuler rendah dan biasanya disebut asam volatil. Asam lemak ini dapat berevaporasi pada tekanan atmosfer. Pada asam volatil, prekursor paling penting ke metana adalah asam asetik atau asetat.
Produk fermentasi seperti alkohol seperti etanol atau butanol dapat ditransformasikan menjadi asam lemak atau asam volatil. Proses fermentasi ini merupakan penggunaan gula saat proses metabolik bakteri di bawah kondisi anaerobik. Sedangkan pada protein, bakteri anaerobik dapat dihidrolisis ke bentuk peptida lain. Ada beberapa protein asam amino bebas yang diproses secara lebih lanjut dapat membentuk asam volatil.
Asam volatil dapat diturunkan dari lipid, karbohidrat dan protein. Dalam sel hidup, jalur biokimia memasukkan ketiga kelas tersebut secara langsung dan sangat terkoordinasi dan cukup efisien dari kehilangan energi pada proses reaksi ketiganya.
Bakteri fakultatif anaerob dapat melakukan proses metabolik dengan kehadiran oksigen terlarut atau hampir tiadanya oksigen. Proses yang dapat dilakukan misalnya fermentasi campuran beberapa asam. Sebagai contoh spesies dengan genus Enterobacter dapat memproduksi asam, aldehid, alkohol, karbon dioksida dan hidrogen dari monosakarida sederhana yakni glukosa.
Sedangkan bakteri anaerob tidak dapat melakukan proses metabolik di lingkungan dengan oksigen terlarut. Bakteri ini dapat dibagi menjadi dua grup yaitu bakteri yang tidak bisa melakukan metabolisme ketika ada oksigen terlarut namun masih bisa bertahan hidup pada kondisi oksigen yang paling sedikit dan bakteri yang intoleran terhadap jumlah oksigen berapa pun di lingkungannya. Beberapa bakteri anaerob merupakan produser asam kuat dan yang lainnya mampu mengurangi senyawa sulfat menjadi senyawa hidrogen sulfida. Dalam pengolahan limbah, bakteri fakultatif ananerob dan anaerob mampu menyelesaikan proses hidrolisis dari substrat organik yang cukup kompleks.
Bakteri metanogenik dapat mengkonversi produk fermentasi seperti asam format dan asetat ke produk gas seperti CO2, H2, dan CH4 yang dapat berdifusi ke lingkungan aerobik (atmosfer). Bakteri ini menempati tempat khusus dalam lingkungan mikroba karena mereka sendiri dapat memproduksi hidrokarbon (CH4) sebagai  produk metabolik mereka yang banyak. Dinding sel dari bakteri ini tidak keras, karakteristik ini yang membedakan kelompok bakteri ini dengan kelompok eubakteria. Ada 5 substrat yang dapat dikonversi oleh baketri ini menjadi gas metana yaitu asetat, format, metanol, karbondioksida dan metilamin.
Bakteri anaerob pada umumnya terdapat pada tanah ataupun pada saluran usus. Pada usus inilah bakteri tersebut dapat berkembang dengan baik. Beberapa ananerob seperti bakteri anaerobik sakarolitik atau pemecah gula dapat memecah polisakarida menjadi monosakarida. Jumlah bakteri ini pada digester berkisar antara 107 hingga 108 sel/ml. Ada pula bakteri anaerobik selulolitik yang menghidrolisis selulosa dan hemiselulosa menjadi monosakarida. Jumlah bakteri ini pada digester berkisar antara 104 hingga 105 sel/ml.
Bakteri anaerobik proteolitik dapat menghidrolisis polimer asam amino kompleks, protein, atau polipeptida menjadi asam amino sederhana. Jumlah bakteri ini pada digester berkisar antara 105 hingga 106 sel/ml. Bakteri anaerobik lipolitik dapat menghidrolisis lemak, minyak, dan lilin jenuh atau tak jenuh menjadi asam lemak dan asam lemak volatil. Jumlah bakteri ini pada digester berkisar antara 104 hingga 105 sel/ml. Pada perbedaan aktivitas biokimia, beberapa spesies pada genus yang sama dapat menghidrolisis lebih dari satu grup substrat. Bakteri metanogenik dapat juga ditemukan di digester dengan jumlah antara 104 hingga 108 sel/ml.
Proses pengolahan anaerobik menggunakan digester untuk mengubah molekul organik kompleks ke metana mempunyai banyak variasi. Salah satunya yang sederhana adalah melalui dua tahap sederhana yaitu : hidrolisis ataupun pembentukan asam volatil serta pembentukan metana. Yang lainnya berada dalam pembagian tiga tahap dengan hidrolisis polimer organik memisahkan langkah pertama.
Selain itu beberapa mikrobiologis ada yang membagi ke dalam 6 tahap yaitu langkah pertama dengan hidrolisis protein, karbohidrat dan lipid. Sedangkan langkah kedua yaitu fermentasi atau pembentukan asam. Langkah ketiga yaitu hidrolisis anaerobik dan langkah keempat yaitu oksidasi anaerobik dari asam lemak dan beberapa asam volatil. Selanjutnya langkah kelima yaitu konversi asetat menjadi metana dan yang keenam adalah penggabungan hidrogen dan karbondioksida menjadi metana.
Berbagai faktor lingkungan dapat mempengaruhi efisiensi pengolahan anaerobik dan metanogenesis. Di antaranya adalah sebagai berikut :

1.      Komposisi nutrisi,
2.      Jumlah oksigen terlarut pada digester anaerobik,
3.      Temperatur digester,
4.      pH (konsentrasi ion hidrogen) pada digester,
5.      Konsentrasi padatan volatil, dan
6.      Konsentrasi asam volatil.


Beberapa substansi pada jumlah yang sedang hingga berlebihan dapat menyebabkan berbagai masalah pada pengolahan anaerobik menggunakan digester. Di antaranya adalah ion logam berat, sulfida, gas ammonia terlarut, asam volatil yang tidak terionisasi, dan sianida. Ada juga inhibitor lainnya seperti deterjen rumah tangga dan klorin.

Sabtu, 26 November 2011

Bioenergetika


Bioenergetika

Bioenergetika adalah studi tentang macam-macam variasi transformasi energi yang terjadi pada makhluk hidup. Sebuah sel hidup disibukkan oleh aktivitas. Semua jenis makromolekul dibentuk dari materi-materi kasar, produk buangan di produksi dan diekresikan, aliran petunjuk genetik dari nukleus ke sitoplasma, vesikel berpindah melalui jalur sekretori, ion dipompa melewati membran plasma dan masih banyak lagi.
Energi didefinisikan sebagai kapasitas untuk melakukan kerja. Termodinamika adalah studi tentang perubahan energi yang terjadi di alam. Hukum pertama termodinamika berisi tentang konversi energi. Energi tidak dapat diciptakan ataupun di musnahkan. Energi hanya dapat diubah dari bentuk satu ke bentuk lainnya.
Sel mampu mengubah energi dari satu bentuk ke bentuk lain. Sebagai contohnya yaitu energi yang tersimpan sebagai ATP dalam sel yang dapat dikonversi menjadi energi mekanik saat sel melakukan perpindahan. Perubahan energi yang terpenting dalam dunia biologi adalah konversi dari cahaya matahari ke energi kimia yang terjadi saat fotosintesis.
Dalam transformasi energi terdapat dua kata yang sering digunakan yaitu sistem dan lingkungan. Sistem mungkin saja adalah sebuah sel hidup. Sedangkan lingkungan bisa berupa apa yang ada di sekitar sel tsb. Perubahan energi pada sistem mempunyai dua kemungkinan perubahan. Pertama, energi dalam sistem berubah menjadi panas dari sistem tersebut, dan yang kedua yaitu berubah menjadi kerja.
Energi dalam adalah energi yang ada pada sistem. Energi Dalam pada akhir transformasi akan lebih banyak daripada permulaan jika panas diserap dan lebih sedikit jika panas di keluarkan dari sistem. Reaksi yang kehilangan panas dinamakan eksotermik, sedangkan apabila sistem menyerap panas dari lingkungan dinamakan endotermik.

Hukum kedua termodinamika menyatakan konsep bahwa kejadian yang ada di alam ini mempunyai arah, dari keadaan energi yang lebih tinggi menuju ke keadaan energi yang lebih rendah. Suatu kejadian bisa terjadi secara spontan yang berarti bahwa dapat terjadi tanpa input dari eksternal energi. Konsep hukum kedua termodinamika diterapkan untuk mesin panas.
Dalam suatu reaksi tidak bisa mempunyai efisiensi 100%, hal ini karena terjadi hilangnya energi menjadi panas. Hilangnya energi dalam suatu proses adalah hasil dari kecenderungan untuk ke posisi tidak teratur dari alam. Derajat ketidakteraturan ini disebut sebagai entropi. Entropi berhubungan dengan perpindahan secara sembarang partikel. Munculnya panas dari oksidasi glukosa dalam sel atau gesekan antara darah dan pembuluh darah adalah contoh dari kenaikan entropi.
Kehidupan juga diatur oleh prinsip yang sama. Organisme hidup mampu untuk menurunkan entropi mereka dengan menaikkan entropi lingkungan mereka.
Hukum pertama dan kedua termodinamika mengindikasikan bahwa energi yang ada di alam adalah konstan, tetapi entropi terus menuju suatu titik maksimum. Semua tranformasi energi yang terjadi secara spontan harus memiliki perubahan energi bebas bernilai negatif. Proses yang terjadi secara spontan yang sesuai hukum termodinamika dideskripsikan sebagai proses eksergonik. Sebaliknya, jika perubahan energi bebasnya positif dan tidak berlangsung secara spontan maka proses tersebut disebut endergonik. Proses endergonik bisa berlangsung jika ada energi yang dimunculkan.
Total energi bebas dari reaktan lebih besar daripada total energi bebas produk, sehingga perubahan energi bebas bernilai negatif dan reaksi mempunyai arah lebih menuju ke produk. Semakin besar perubahan energi bebas, reaksi lebih jauh dari keadaan setimbang dan lebih banyak kerja yang dilakukan oleh sistem. Saat berlangsung suatu reaksi, perbedaan energi bebas antara reaktan dan produk menurun, perubahan energi bebas menjadi lebih negatif, dan selama keadaan kesetimbangan perbedaannya bernilai 0, dan tidak ada kerja yang dihasilkan.
Dalam reaksi metabolik, perubahan energi bebas juga terjadi. Dan salah satu reaksi kimia terpenting dalam sel yaitu proses hidrolisis ATP. Sel banyak melibatkan reaksi yang perubahan energi bebasnya bernilai positif dikarenakan konsentrasi relatif reaktan dan produk mempengaruhi keberlangsungan reaksi. Ratusan reaksi terjadi secara serentak dalam sel. Semua reaksi ini berlangsung bersamaan dengan reaksi-reaksi lainnya karena produk dari satu reaksi menjadi sebuah reaktan untuk reaksi selanjutnya pada waktu yang bersamaan dan hal itu terjadi secara terus-menerus dalam rangkaian reaksi metabolik.
Hidrolisis ATP digunakan untuk mengendalikan kebanyakan proses endergonik dalam sel. ATP dapat digunakan untuk bermacam-macam proses karena grup pada terminal fosfat dapat diubah menjadi banyak varietas molekul berbeda-beda, seperti asam amino, gula, lemak, dan protein.
Karena reaksi terus menuju keadaan kesetimbangan, energi bebasnya digunakan untuk melakukan kerja menuju keadaan minimum dan entropi naik menuju nilai maksimum. Metabolisme seluler adalah metabolisme non-kesetimbangan yang sangat penting. Ini bukan berarti bahwa beberapa reaksi tidak dapat terjadi pada saat kesetimbangan atau mendekati kesetimbangan dalam sel. Faktanya, banyak reaksi jalur metabolik terjadi saat mendekati kesetimbangan.
Prinsip dasar dari termodinamika adalah diterapkan pada benda tak hidup, sistem yang tertutup dalam kondisi kesetimbangan bolak-balik (reversibel). Sebaliknya, metabolisme seluler utamanya terjadi pada kondisi tidak bolak-balik (irreversibel), tidak pada kesetimbangan karena tidak seperti pada tabung tes reaksi, tetapi sel adalah sistem terbuka. Materi dan energi terus mengalir ke dalam sel dari pembuluh darah atau media kultural. Aliran kontinu dari oksigen dan materi lain ke dalam atau ke luar sel mengijinkan metabolisme seluler dalam keadaan tetap. Dalam keadaan tetap, konsentrasi dari reaktan dan produk relatif konstan, walaupun reaksi tidak mendekati kesetimbangan. Sel mampu mempertahankan keadaannya agar tetap stabil mengikuti perubahan keadaan lingkungan. Dalam kata lain, sel tetap dalam keadaan dinamik tidak dalam kesetimbangan, laju maju atau mundur suatu reaksi dapat meningkat atau turun secara langsung menurut respon dari perubahan lingkungan.